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Abstract 

Within the framework of the speech processing technologies, speaker de-identification is a term used 

for concealing speakers’ identities from their spoken utterances, while still preserving the 

intelligibility of the pure depersonalised linguistic information. Such techniques have a wide range of 

applications in real life speech-based scenarios when speaker anonymity protection is required 

including human-human conversations as well as human-machine voice interactions. 

As a first step, we present a detailed comparison of the existing speaker de-identification solutions, 

followed by a list of challenges that need further research. The state-of-the-art techniques introduced 

in this report could be classified into two groups: i) methods based on voice conversion; ii) methods 

based on speech/diphone recognition and synthesis. 

The first limitation observed from the literature review is the fact that the efforts of the researchers 

have been focused mainly on de-identifying spectral features of speech, but de-identifying prosodic 

characteristics of voice is still an important challenge. For this reason, in this report, a new speaker 

de-identification method based on linear predictive analysis is proposed, which combines both the 

spectral de-identification and prosodic de-identification, so that a better de-identification performance 

could be expected theoretically. Additionally, in contrast to other existing alternatives, the new 

method does not require previous training of the target speaker to be de-identified, thus it allows a 

more flexible online de-identification. In order to prove the validity of the new method, it is compared 

to the state-of-the-art systems based on statistical Gaussian mixture model, the most popular 

technique in the speaker de-identification world. The new speaker de-identification system and the 

baseline systems are evaluated by the state-of-the-art speaker recognition system. It is concluded that 

the new method outperforms baseline systems in terms of de-identification performance. 

1. Introduction 

1.1 Speaker de-identification: definition 

‘‘It’s me!’’ This claim is usually made over the telephone conversation or at an entrance out of view 

of the intended listener. It denotes the expectation that one’s voice is sufficient for the listener to 

recognise the speaker. From a speech signal processing point of view, this can be explained as the fact 

that the speech signal carries massive amounts of speaker-dependent biometric information that 

allows the listener identifying the person who is speaking. 

In this context, the central topic of this report, speaker de-identification, can be considered as a part of 

the speaker biometric information protection area. The goal of speaker de-identification systems is to 

conceal speakers’ identities from their spoken utterances, while still preserving the intelligibility of 

the pure depersonalised linguistic information [1]. In other words, it is intended to enable privacy-

preserved and security-assured speech transmission of ‘‘what was said’’ but to disguise traceable 

information of ‘‘who said it’’. Hence, the voice characteristics of the speaker have to be identified by 

the system and then modified or replaced by different voice features, without losing any information 

or modifying the message that is being transmitted. In general, an efficient speaker de-identification 

system has to be capable of accomplishing three main tasks:  

❒ the system has to hide speakers’ true identities from their spoken utterances;  

❒ the system has to preserve voice quality of the de-identified speech;  

❒ the system has to allow authorised listeners to retrieve the original identity of the source 

speaker and avoid un-authorised listeners to re-identify the source speaker. 

1.2 Speaker de-identification: application 

Speaker de-identification systems have a wide range of applications in real life speech-based 

scenarios when speaker anonymity protection is required. For example, speaker de-identification can 

be applied to protect the witnesses in investigations, whistle-blowers, and journalists’ sources, etc. In 

addition, speaker de-identification can be utilised to preserve the privacy of individuals against their 
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confidential medical information. Moreover, speaker de-identification can also be exploited to assure 

the freedom of expression and democracy in the public domains. 

Cloud-based voice user interface, a new deployment of human-machine interaction, enables 

individuals convenient access to information exchange through spoken languages. Its benefits include 

not only hands-free and eyes-free, but also high communication efficiency and positive user 

experience. With all these charming benefits, cloud-based voice user interface is extensively used to 

activate, control, and operate numerous smart devices such as smart TVs, smart vehicles, smart air 

conditioners; and various smart personal assistants as well, such as Apple’s Siri, Amazon’s Echo, 

Microsoft’s Cortana, Google’s Now, and etc. In general, typical entities of a cloud-based voice user 

interface system include a speech-driven smart device, a cloud service provider, and third-party 

service providers, as shown in Figure 1.1. These smart devices and applications listen to all the sounds 

in users’ immediate vicinity and send them back to the servers in the cloud for speech recognition and 

semantic analysis continuously. A wide variety of personal information might be contained in these 

voice recordings, for instance, user ID credentials, medical conditions, financial information, private 

conversations, and etc. Under this circumstance, users of cloud-based voice-driven services are 

increasingly concerned about the trustworthiness of such systems as well as the possible compromise 

of their privacy. For example, one of the fears is that users could be individually identified by the 

curious Cloud Service Providers (CSP), and their private conversation and sensitive information could 

be leaked out to the malicious Third-Party Service Providers (TPSP) and malicious outsiders. This is a 

core problem as individuals or enterprises concerned about their privacy are likely to refuse 

participation in such systems, and consequently to slow or stop the development of the cloud-based 

and speech-based smart living environments. In this context, it is desirable that speaker’s voice 

identities could be removed before the speeches are transmitted to the cloud servers. Hence, speaker 

de-identification techniques could be applied to potentially improve the robustness of the cloud-based 

voice-driven user interface systems. 

 

Figure 1.1 Framework of cloud based voice user interface system 

Another application field of speaker de-identification is to enable the development of privacy-

preserving technologies that use speech biometrics, such as the speaker verification systems. The 

objective of speaker verification is to accept or reject an identity claim from a speech sample [2].  

Speaker verification systems have been applied to real-world security applications as access control 

solutions for more than one decade. Compared with the long, complex, and frequently changing 

passwords, speaker verification systems offer greater convenience to initiate the automated services 

through spoken languages, while maintaining sufficiently high accuracy and ensuring that the user are 

present at the point and time of verification [3]. The application of speaker verification techniques is 

increasing rapidly in a broad spectrum of industries nowadays, including the financial bank services, 

retail, corrections, even entertainment [4]. For example, a large amount of banks are deploying voice 

biometrics as their primary means to authenticate customers to their call centres, e.g. HSBC, Barclays 

Bank, Banco Santander Bank, Royal Bank of Canada, Tangerine Bank, Manulife Bank, and etc. [5]. 
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However, speaker identity leakage poses serious threats to such systems, i.e. voice replay attacks and 

spoofing attacks with synthesised voice. For instance, voice conversion, which utilises voice 

biometrics to impersonate a particular speaker, can be intentionally used to deceive the voice-secured 

access systems [6]. With the help of voice conversion, one can gain unauthorised access to these 

voice-secured services with a synthetically generated voice. Multiple numbers of studies have been 

done to investigate the effect of transformed speech on speaker recognition systems [6][7][8][9]. 

These studies point out that correctly recognition rate decreases as the amount of conversion training 

data increases. Hence, voice conversion techniques could be deliberately used to fool the speaker 

recognition systems. In this context, users’ privacy could be violated and their security could be 

broken. As a result, nowadays there is a major demand to develop the technology capable of 

concealing the speaker’s identities in order to preserve users’ privacy. This technology is referred to 

as speaker de-identification. 

Finally, from a scientific point of view, acquiring a high level of knowledge about speaker 

individuality would be very useful to make progress in other speech processing technologies such as 

the speaker-independent speech recognition, speaker recognition, very-low-bandwidth speech coding 

using an adequate parameterization of the speaker-dependent information, etc. 

1.3 Scope of work 

The overall project consists of five interlinked work packages, with each one having specific 

outcomes to support others. Figure 1.2 illustrates the framework of the research diagram and the inter-

connections between different works. 

Work 1: Risk assessment against speaker identification 

This work will identify security, privacy and trust issues against speaker identification in real-life 

voice-driven scenarios. Particularly, both the human-human conversations and human-machine voice 

interactions will be considered here. 

Work 2: Literature review for speaker de-identification solutions 

This work will survey into the existing speaker de-identification solutions. Based on the comparative 

analysis of these state-of-the-art techniques, research challenges that need future efforts in the speaker 

de-identification domain are to be concluded. 

Work 3: High-quality speaker de-identification strategy 

The general objective of this work is to design a speaker de-identification method with high quality 

and flexible versatility. Additionally, the state-of-the-art speaker de-identification systems will be 

implemented as baselines for further comparison with the novel high-quality strategy. The new 

acoustic de-identification method aims to accomplish five specific objectives: 

❒ to enhance the efficiency of the speaker de-identification performance; 

❒ to preserve the intelligibility of the de-identified speech signals; 

❒ to assure any unseen speakers to be de-identified without the previous enrolment of their 

speech samples; 

❒ to allow authorised listeners to retrieve the original identity of the speaker but to avoid un-

authorised listeners re-identifying the speaker; 

❒ to guarantee individuality between different speakers. 

Work 4: Evaluation for speaker de-identification methodologies 

This work will establish suitable evaluation porotypes for speaker de-identification methods and 

develop relevant computational tools for the performance experiments. Both the subjective 

experiment and objective experiment will be conducted here in order to assure the degree of reliability 

of the test results. 
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Work 5: Implementation of speaker de-identification system with voice UI 

The objective of this work consists of the implementation of voice user interface (UI) system and the 

integration of the resulting speaker de-identification system into the implemented voice UI. It thus 

will lead to impact in real-world applications. 

 

Figure 1.2 Framework of research diagram 

1.4 Report overview 

The rest of the report is organised as follows.  

In Chapter 2, various parameters and measurements used in the performance evaluation for speaker 

de-identification systems are outlined. The contribution of this chapter is a taxonomy of 

measurements in terms of five aspects: 

❒ Efficiency of speaker de-identification 

❒ Intelligibility of the de-identified speech 

❒ Limitation on target speakers to be de-identified 

❒ Reversibility and non-reversibility of de-identified speech 

❒ Individuality between different speakers  

Chapter 3 provides a detailed comparison of existing speaker de-identification solutions, followed by 

a list of research challenges that need future efforts. The state-of-the-art techniques introduced in this 

chapter could be mainly classified into two groups: 

❒ Methods based on voice conversion 

❒ Methods based on speech/phonetic recognition and synthesis 

In Chapter 4, two baseline speaker de-identification systems are built using the harmonic plus 

stochastic model and the state-of-the-art voice conversion techniques. After that, a novel high-quality 

strategy combined with prosodic characteristics de-identification and spectral envelopes de-
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identification are proposed. It gives very good results in terms of de-identification performance, 

without the previous enrolment of speakers to be de-identified. 

Chapter 5 is devoted to the research plans for future works, which can be divided into three main 

work packages: 

❒ Development of high-quality speaker de-identification strategy 

❒ Evaluation for speaker de-identification methodologies 

❒ Integration of speaker de-identification system into the voice user interface system 

Finally, in Chapter 6, the main conclusions of this report are summarized. 

2. Evaluation criteria for speaker de-identification systems 

This section presents a thematic taxonomy of performance evaluation measurements for speaker de-

identification. These measurements can be basically categorised into five groups: i) efficiency of 

speaker de-identification, ii) intelligibility of the de-identified speech, iii) reversibility and non-

reversibility of the de-identified speech, iv) limitation on target speakers to be de-identified, and v) 

individuality between different speakers. 

2.1 Efficiency of de-identification 

Efficiency assessment of speaker de-identification is the process of checking if the original speakers 

could be recognised from their de-identified speeches. Speaker identification system, speaker 

verification system, and also human recognition test are used to carry out the efficiency assessment 

for speaker de-identification [6][10][11]. Speaker identification is the method to determine the 

identity of the speaker who produced the input speech signal, while speaker verification is the method 

to accept or reject an identity claim from a speech sample. Generally, the False Acceptance Rate 

(FAR) and False Rejection Rate (FRR) are used to measure the recognition accuracy of a speaker 

verification system. The higher FAR or higher FRR represents lower recognition accuracy as defined 

as: 

𝐹𝐴𝑅 =
#𝑓𝑎𝑙𝑠𝑒 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒𝑠

#𝑡𝑜𝑡𝑎𝑙 𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠
× 100 (2.1) 

𝐹𝑅𝑅 =
#𝑓𝑎𝑙𝑠𝑒 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠

#𝑡𝑜𝑡𝑎𝑙 𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠
× 100 (2.2) 

Here, the de-identification rate (DIR) is used to evaluate the efficiency of a speaker de-identification 

system, which is calculated as 

𝐷𝐼𝑅 =
#𝑡𝑜𝑡𝑎𝑙 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 − #𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠

#𝑡𝑜𝑡𝑎𝑙 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠
× 100 (2.3) 

Particularly, the higher DIR stands for higher efficiency of the speaker de-identification system. For 

example, if the speakers can still be identified through their de-identified speech by speaker 

identification or speaker verification systems or human listeners, then we can conclude that the 

speaker de-identification solution does not perform as desired in speaker de-identification. 

2.2 Intelligibility of de-identified speech 

Intelligibility evaluation of de-identified speech is the examination to check if the non-linguistic 

speech content can be recognised and understood after linguistic de-identification. Speech recognition 

(SR) system and also human recognition test are used to evaluate the intelligibility of the de-identified 

speech. Here, the Word Error Rate (WER) is used to evaluate the intelligibility of a speaker de-

identification system, which is calculated as 
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𝑊𝐸𝑅 =
#𝑢𝑛𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑠𝑒𝑑 𝑤𝑜𝑟𝑑𝑠

#𝑡𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑑𝑠
× 100 (2.4) 

Particularly, the higher WER represents lower intelligibility of the speaker de-identification system. 

For instance, if the context of de-identified speech can still be correctly recognised by speech 

recognition systems or human listeners, then it can be said that the speaker de-identification solution 

still preserves the intelligibility of the output de-identified speech. 

2.3 Limitation on target speakers to be de-identified 

Another performance evaluation aspect is the limitation on target speakers to be de-identified. In other 

words, it is the methodology to check whether the speaker de-identification system can de-identify all 

the new, unseen speakers. For example, if the speaker de-identification solution is only applicable to 

the speakers whose speech samples are acquired in advance for system training, then we can conclude 

that the speaker de-identification solution has considerable limitation on target speakers who can be 

de-identified. 

2.4 Reversibility and non-reversibility of de-identified speech 

Reversibility assessment of speaker de-identification is the experiment to check if the de-identified 

speech can be re-identified so that authorised listeners are able to retrieve the original identity of the 

speaker. In turn, non-reversibility assessment of speaker de-identification is the test to check if the de-

identified speech cannot be re-identified so that un-authorised listeners are not able to access to the 

true identity of the speaker. To some extent, reversibility and non-reversibility are two opposite issues. 

On the one hand, a speaker de-identification system requires non-reversibility to assure secured 

speaker de-identification. On the other hand, it is also needed for the system to re-identify the source 

speaker in case that the real identity is required. 

2.5 Individuality between different speakers 

The individuality between different speakers is also an important characteristic of an efficient speaker 

de-identification system. Individuality assessment is the process of distinguishing different speakers 

after the phase of de-identification. Both speaker recognition systems and human listeners can be 

utilised to performance such experiments. 

3. State of the art of speaker de-identification methods 

Research studies on the speaker de-identification solutions have a relatively short history since the 

first speaker de-identification system was firstly proposed by Jin in 2009 [10]. A certain amount of 

techniques has been developed for speaker de-identification during the last decade. Despite the 

diversity of methods, they can be classified in two groups, depending on the type of de-identification 

that they apply: i) methods based on voice conversion; ii) methods based on speech/phonetic 

recognition and synthesis. A detailed explanation of the existing spectral conversion methods and 

algorithms is presented in the following subsections. 

3.1 Methods based on voice conversion 

3.1.1 Voice conversion framework 

A vast majority of speaker de-identification solutions found in the literature apply voice conversion 

techniques to achieve the goal of speaker de-identification [7][10][11][12]. Voice conversion is a 

process of modifying the voice produced by a specific speaker, called source speaker, for it to be 

perceived by listeners as if it had been uttered by a different specific speaker, called target speaker [6]. 

The general framework of the voice conversion system is shown in Figure 3.1. The entire process can 

be divided into two modules: the offline training module and the runtime conversion module. In both 

modules, speech signals are firstly parameterised into short-term feature vectors, a process that is 

known as feature extraction. During the offline training phase, each source speaker’s feature is paired 
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up with phonetically equivalent target speaker’s feature at frame-level, which is called frame 

alignment. Then, a conversion function is learnt from these source-target feature pairs, which map the 

utterance characteristics of source speaker to target speaker. In the runtime conversion phase, the 

learnt conversion function is used for converting source features to target features. Finally, the 

converted feature sequences are passed to a synthesis filter to reconstruct an audible speech signal. 

Consequently, the reconstructed speech signal contains different voice identities compared with the 

source speaker, so that we can say that the source speaker has been de-identified.  

 

Figure 3.1 General framework of voice conversion system 

3.1.2 GMM-based standard voice conversion 

The earliest attempt to speaker de-identification starts from the idea whether a voice conversion 

system is able to deceive the speaker identification systems by Jin in 2008 [9]. Firstly, a set of 

conversion functions are trained between a closed set of source speakers and the target speaker with 

synthetic voice. Then, when a speech sample from the same set of source speakers is presented to the 

system, one of the conversion functions trained from the same speaker will be selected. Finally, the 

system can utilise the selected conversion function to transform the source voice to the target 

synthetic voice. The initial experiments showed that the GMM-based voice conversion system is able 

to fool the GMM-based speaker identification system with a relatively high de-identification rate of 

92%, but not able to deceive the Phonetic-based speaker identification system with the de-

identification rate of 42%.  

In the GMM-based voice conversion systems, the Gaussian Mixture Model (GMM) based voice 

conversion technique was utilised to obtain the objective of speaker de-identification in Jin’s work [9].  

From the existing literature [11][12][11], [12], this GMM-based voice conversion approach later 

became the most widely used solution to speaker de-identification. Particularly, the acoustic mapping 

between source speaker and the target speaker is characterised by {𝑥𝑡, 𝑦𝑡}, where the 𝑥𝑡 denotes the 

source feature vectors and the 𝑦𝑡 denotes the target feature vectors at frame 𝑡 respectively. The joint 

Gaussian Mixture Model is fitted to these training acoustic vectors 𝑧𝑡 as: 

𝑝(𝑧𝑡) = ∑ 𝑤𝑛
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where 𝑧𝑡 = [𝑥𝑡
𝛵, 𝑦𝑡

𝛵]𝑇, 𝑇 denotes the transposition of the vector, 𝑛 and 𝑁 demote the index and the 

total number of Gaussian mixture components respectively, 𝑤𝑛
(𝑧)

 denotes the weight assigned to the 

𝑛th Gaussian component of 𝑧 and 𝑁(𝑧𝑡;
𝑛
(𝑧),𝑛

(𝑧)
) denotes a Gaussian vector distribution defined by 

the mean vector 
𝑛
(𝑧), and the covariance matrice 𝑛

(𝑧)
 of the 𝑛th Gaussian mixture component. These 

described parameters can be collectively represented by: 


(𝑧) = {𝑤𝑛

(𝑧)
,

𝑛
(𝑧),𝑛

(𝑧)
 }  n = 1, 2, … , 𝑁 (3.2) 


𝑛
(𝑧) and 𝑛

(𝑧)
 can be written as: 


𝑛
(𝑧) = [


𝑛
(𝑥)


𝑛
(𝑦)

]     and     𝑛
(𝑧)

= [
𝑛

(𝑥𝑥)
𝑛

(𝑥𝑦)

𝑛
(𝑦𝑥)

𝑛
(𝑦𝑦)

] (3.3) 

where 
𝑛
(𝑥)  and 

𝑛
(𝑥)  are the mean vectors of the 𝑛 th component for source and target speaker 

respectively. The matrices 𝑛
(𝑥𝑥)

 and 𝑛
(𝑦𝑦)

 are the covariance matrices and the matrices 𝑛
(𝑥𝑦)

 and 

𝑛
(𝑦𝑥)

 are the cross-covariance matrices of the 𝑛 th component for source and target speaker 

respectively. 

During the training phase, the Expectation-Maximisation (EM) algorithm is applied to estimate these 

model parameters which maximise the likelihood of the GMM distribution. It is worth noting that the 

GMM model parameters only represent the harmonic components of the speech frames here. For 

example, given a set of 𝑇 training vectors 𝑍 = {𝑧1, … , 𝑧𝑇}, its GMM likelihood can be represented as:  

𝑃(𝑍|) = ∏ 𝑝(𝑧𝑡|)

𝑇

𝑡=1

 (3.4) 

During the testing phase, given an input vector 𝑥𝑡, the Minimum Mean Squared Error method [13] is 

used to predict the target vector 𝑦𝑡 as: 

𝐹(𝑥𝑡) = 𝐸[𝑦𝑡 𝑥𝑡] = ∑ 𝑝𝑛(𝑥𝑡) [𝑛
(𝑦) + 𝑛

(𝑦𝑥)
(𝑛

(𝑥𝑥))
−1

(𝑥𝑡 − 
𝑛
(𝑥))]

𝑁

𝑛=1

 (3.5) 

where 𝑥𝑡  is the LSF vector of the harmonic component at 𝑡 th frame, 𝑝𝑛(𝑥𝑡)  is the posterior 

probability that a given vector 𝑥𝑡 belongs to the 𝑛th mixture component. The posterior probability 

𝑝𝑛(𝑥𝑡) for component 𝑛 is given by: 

𝑝𝑛(𝑥𝑡) =
𝑤𝑛𝑁(𝑧𝑡;

𝑛
(𝑥),𝑛

(𝑥𝑥)
)

∑ 𝑤𝑚𝑁(𝑧𝑡;
𝑚
(𝑥),𝑚

(𝑥𝑥)
)𝑁

𝑚=1

 (3.6) 

Finally, the stochastic component is predicted from the target speaker training vectors by means of 

linear transformation [14]. After the determination of conversion function for harmonic components, 

all the harmonic-stochastic vectors {𝑦𝑡 , 𝑦𝑡
𝑠} and the acoustic models of the target speaker given by 

{𝑤𝑛;
𝑛
(𝑦),𝑛

(𝑦𝑦)
}  can be used to calculate the optimal vectors {𝑣𝑛}  and matrices {𝑛}  of linear 

transformation that minimise the error of the following function: 

𝑦𝑡
𝑠 = ∑ 𝑝𝑛(𝑦𝑡)

𝑁

𝑛=1

[𝑣𝑛 + 𝑛 (𝑛
(𝑦𝑦)

)
−1

(𝑦𝑡 − 
𝑛
(𝑦))] (3.7) 
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In conclusion, the mixture of Gaussian components is firstly used to model the probability densities of 

joint source and target speaker’s feature vectors. Then a continuous probabilistic frame-wise mapping 

is applied to the source feature vectors. It can capture the overall spectral characteristics and can 

produce the average representation of the target spectrum. As a result, GMM based voice conversion 

can generate converted speech with good similarity to target speech, but with degraded quality [6]. 

3.1.3 GMM-based voice conversion combined with de-duration method 

In later research, Jin et al. proposed to apply standard voice conversion combined with de-duration 

method to improve the de-identification performance[7]. The concept of duration of a sound is 

defined as an amount of time interval that a sound lasts. Thus, in this work, the goal of speech de-

duration is obtained by applying consistent duration statistics to utterances regardless of speakers. The 

reason by performing the de-duration method is to eliminate the possibility that the duration statistics 

of the speaker might be exploited by the speaker recognition system to recognise the speaker.  

The de-identification performance of the modified speech by using de-duration method is reported to 

be better than of the converted speech by using standard GMM method. In particular, it is reported 

that the de-identification rate of the modified speech by de-duration method is 96% against the GMM-

based speaker identification system, and 46% against the Phonetic-based speaker identification 

system, while the de-identification rate of the modified speech by using standard GMM method is 92% 

against the GMM-based speaker identification system, and 42% against the Phonetic-based speaker 

identification system. 

3.1.4 GMM-based voice conversion with chained transformation method 

Considering the better performance of de-identification with the de-duration method compared to the 

standard GMM-based method described in the previous paragraph, a very simple approach chained 

with both the de-duration method and the GMM-based standard method was also presented in [7]. In 

this work, the output speech of the de-duration system is used as the input speech for the baseline 

standard voice conversion system.  

From the experimental results in [7], the transformed speech with chained conversion method 

outperforms the de-duration method, with a de-identification rate of 67% against the Phonetic-based 

speaker identification system, while achieves same de-identification rate of 96% against the GMM-

based speaker identification system. 

3.1.5 GMM-based voice conversion combined with transterpolated concept 

The appearance of previous GMM-based systems didn’t lead to satisfactory results against the 

Phonetic-based speaker identification system, so Jin in [7] also proposed another approach based on 

the concept of transterpolation. By ‘‘transterpolation’’, it refers to the process of interpolation or 

extrapolation between source feature and target feature. In particular, the transterpolated feature, 𝑥, is 

computed as 𝑥 = 𝑠 + 𝑓(𝑣 − 𝑠) , where 𝑠 is the value of the source speaker’s feature, 𝑣 is the value of 

the converted feature, and 𝑓 is the factor of inter- or extrapolation. The intelligibility of the converted 

speech is reported to be very high with a speech recognition rate of 100% while the inter- or 

extrapolation factor 𝑓 is in the range of 1.2 to 1.6. 

It is reported in [7] that the transterpolated method outperforms previous three systems (the standard 

voice conversion method, the de-duration method and the chained conversion method). In particular, 

the transterpolated method with inter- or extrapolation factor 𝑓  of 1.6 gives the best speaker de-

identification performance, achieving de-identification rate of 100% against the GMM-based speaker 

identification system and 87.5% against the Phonetic-based one. Hence, it can be concluded that the 

GMM-based voice conversion system combined with transterpolated method could fool the 

conventional GMM-based speaker identification system, but performs undesired result against the 

state-of-the-art Phonetic-based speaker identification system. 

3.1.6 GMM-based voice conversion combined with speaker model adaption 

In [11], a speaker model adaption based approach was used to achieve the online speaker de-

identification system in 2014. The definition of ‘‘online’’ is that any new and unseen speakers can be 
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de-identified in the runtime without their previous enrolment when using the de-identification system. 

The framework of this work is shown in Figure 3.2. Firstly, a set of voice conversion functions are 

pre-learnt from a closed set of source and target speakers. When a speech sample from a new speaker 

is presented to the system, the system will perform a log-likelihood ratio examination between input 

source speaker and trained closed set of speakers through a speaker identification system. One voice 

conversion function would be selected which achieves the maximum likelihood with the input speaker. 

Finally, the system will apply this conversion function learnt from that trained speaker to the speech 

sample of the new speaker. In other words, an already trained conversion function between source 

speaker A and target speaker B is adapted to the acoustic data of a different source speaker C here. It 

is worth noting that the conversion functions used in this work are also based on Gaussian Mixture 

Model. The de-identified speech in this method is reported to achieve the comparable de-

identification performance compared to the GMM-based standard voice conversion system against the 

GMM-based speaker identification system, but with added flexibility which ensures non-limitation 

among the target speakers to be de-identified. Particularly, the de-identification rate achieved by the 

speaker model adaption method is 87.4%, while it is 91% by the GMM-based standard voice 

conversion method [10]. Nevertheless, it is unclear from [11] that whether the speaker model adaption 

system can deceive the state-of-the-art speaker identification systems, such as the Phonetic-based one. 

 

Figure 3.2 Framework of the model adaption based approach 

3.1.7 GMM-based voice conversion combined with speaker selection 

Recently in 2015, a discriminative approach for target human speaker selection applied in speaker de-

identification system is presented in [12]. In this work, the most appropriate target speaker is selected 

by using a speaker identification system to achieve three specific goals: i) gives the lowest 

identification confidence to be identified as the source speaker; ii) does not converge to a certain 

speaker completely, but gives as much doubt as possible about the speaker identity, and iii) can 

achieve a desired result if the de-identification operation is reversed for the purpose of re-

identification. Figure 3.3 illustrates the general framework of the speaker selection process. The 

whole calculation process can be expressed as the following formula:  

𝐾𝑖 = arg max
𝑘∈𝐾

{−𝛼𝑓(𝑖, 𝑘) + 𝛽𝑐(𝑖, 𝑘) + 𝛾𝑑(𝑖, 𝑘)} (3.8) 

where 𝐾 is the total number of speakers in the repository, 𝑖 and 𝑘 are the speaker index of source 

speaker and target speaker respectively, 𝑓(𝑖, 𝑘) is the identification confidence of the transformed 

speech to the source speaker 𝑖, 𝑐(𝑖, 𝑘) is the confusion factor of the transformed speech from the 

source speaker 𝑖 to the target speaker 𝑘, 𝑑(𝑖, 𝑘) is the identification confidence of the re-transformed 

speech to the source speaker 𝑖, and 𝛼, 𝛽 and 𝛾 are the weights of the previously described functions 

respectively. Additionally, two different confusion factors are defined for speaker selection: entropy 

and Gini index. The confusion factor for a source speaker 𝑖 transformed to be a target speaker 𝑘 using 

entropy or Gini index measure is calculated as: 𝑐(𝑖, 𝑘) = − ∑ 𝑝𝑗  𝑙𝑜𝑔(𝑝𝑗)𝑁
𝑗=1 , 𝑐(𝑖, 𝑘) = 1 − ∑ 𝑝𝑗

2𝑁
𝑗=1 , 

respectively. Here, 𝑁  is the number of speakers in the repository and 𝑝𝑗  is the identification 

confidence that the transformed speech from 𝑖  to 𝑘  is recognised as the voice of speaker 𝑗 . The 
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speaker-selection based method is reported to have significantly better performance among the de-

identification and re-identification performance than the method using synthetic voice. 

Particularly, the speaker-selection based method achieves an average de-identification rate of 90.19% 

against the conventional GMM-based speaker identification system and 86.22% against the state-of-

the-art i-vector-based one, while the baseline standard voice conversion method gives an average de-

identification rate of 61.83% and 64.73% respectively as reported in [12]. 

 

Figure 3.3 Framework of the speaker selection approach 

3.2 Methods based on speech/phonetic recognition and synthesis 

3.2.1 Phonetic recognition and synthesis system 

In a very recent work in 2015, a novel approach based on phonetic recognition and synthesis has been 

proposed to optimise the speaker de-identification performance by Justin [1]. The block diagram of 

this method is shown in Figure 3.4. The system firstly recognises the input speech samples with a 

diphone recognition system, which is referred as the Hidden Markov Model Toolkit [15] and then 

synthesis the obtained phonetic transcription into the speech samples.  

Considering different target speaker characteristics using different speech synthesis techniques, two 

speech synthesis systems are applied for the speech reconstruction process in this work to compare 

speaker de-identification performance and quality of the re-synthesised speech, including the HMM-

based synthesis [15] and the diphone-based synthesis [16]. The HMM-based speech synthesis 

technique is based on Hidden Markov Model (HMM) [15], where the frequency spectrum, 

fundamental frequency, and duration of speech are modelled simultaneously by HMMs. In this system, 

speech waveforms are generated from HMMs themselves based on the maximum likelihood criterion. 

On the other hand, the diphone-based speech synthesis technique is based on the concatenation of 

diphones, which produces more natural-sounding synthesised speech but contains sonic glitches in the 

output speech due to the concatenative synthesis.  

The speaker de-identification approach in [1] allows for the recognition and synthesis module to be 

trained separately without any previous enrolment and any speech material of the source speaker, and 

is capable of running in real-time. Due to the independence between the acoustical models of the 

recognition and synthesis modules, the phonetic recognition and synthesis approaches ensures the 

highest level of de-identification. The speaker de-identification test results in [1] against the speaker 

verification suggest that the recognition performance of both two synthesis implementations are more 

or less random. Thus, the phonetic recognition and synthesis based approach in this work is reported 

to be outperforming the previous works by using voice conversion techniques [7][10] in terms of 

speaker de-identification performance. However, the main disadvantage of the method is the 

intelligibility degradation of the re-synthesised speech, which is related to the performance of the 

Voice 
conversion 

Speaker 
selector 

Speaker 
identification 

Source speech 

Speaker 1 
… 

Speaker N 

Target speech 



Page 14 of 28 

speech recognition module. The recognition errors occurred in the recognition phrase lead to serious 

information losses of the output synthesised speech, which significantly decrease the intelligibility of 

the de-identified speech. Particularly, it is reported from the speech recognition experiments that 

average Word Error Rate (WER) is 33% for the HMM-based synthesis approach, while it is 21% for 

the diphone-based approach. 

 
Figure 3.4 Block diagram of phonetic recognition and synthesis approach 

3.2.2 Speech recognition and synthesis system 

Another obvious solution for speaker de-identification is speech recognition and synthesis. Speech 

recognition is the methodology to convert a speech signal to a sequence of words, while speech 

synthesis is used to convert text into speech [17]. A number of studies have been done to develop 

speech recognition and speech synthesis techniques. One of the early concatenate speech recognition 

systems, the SPHINX system, was suggested by Lee et al. in 1990 [18]. An example of more practical 

applications using speech recognition techniques is autonomous broadcast news transcription system 

developed by Woodland et al. in 1999 [19]. Additionally, several well-defined convenient APIs are 

also available from websites. For example, Sun/Oracle’s Java Speech API (JSAPI) (1998) [20] and 

Microsoft’s Speech Application Software Developer's Kit (2005) [21] provide developers with APIs 

for speech recognition and speech synthesis. Moreover, notable speech processing toolkits including 

audio APIs are the Hidden Markov Model Toolkit (HTK) [15] developed for speech recognition 

systems and Festival Speech Synthesis System [15]. 

Theoretically, by using independent speech-to-text and text-to-speech techniques, the speaker de-

identification approach can achieve reliable and efficient de-identification performance. Nonetheless, 

speech recognition system consumes significant memory and computational resources in local devices, 

which brings limitations in practical speaker de-identification applications. Moreover, the speaker de-

identification also requires full-fledged and error-free speech recognition in order to preserve the 

speech content [7]. For example, the offline speech recognition system on mobile devices 

implemented by Google in 2016 [22] has a memory footprint of 20.3 MB, and achieves 13.5% word 

error rate on a dictation task. It can be concluded that the state-of-the-art offline speech recognition 

techniques nowadays do not perform as desired on mobile devices in terms of recognition rate. 
Therefore, speech recognition technique customized for local devices needs further efforts to 

implement the speaker de-identification solution.  

3.3 Limitations and challenges 

Based on the details of existing speaker de-identification solutions presented in this report, it is 

evident that during the last decade, the performance of speaker de-identification solutions has not 

reached a satisfactory level. This assertion is confirmed by the fact that the de-identification rates 

against the state-of-the-art speaker identification systems are not desired from the literature review. In 

order to address the research challenges in this promising area, here are some problems that still need 

further efforts: 

1) The efforts of researchers have been focused mainly on de-identifying acoustic spectral features 

of speech; however, de-identifying prosodic characteristics of voice is still an important challenge. 

For example, most of the reviewed speaker de-identification solutions are based on the GMM 

voice conversion technique, which aims to only transform the magnitude spectrum of the 

frequency response of the vocal tract system. In fact, a better knowledge about prosody de-

identification is essential for de-identifying non-neutral speeches. On the other hand, it is evident 
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that a complete speaker de-identification system should consider both spectral and prosodic 

features but, at present, this higher-level problem has not been addressed yet. 

2) Currently, no scheme exists that achieves good scores on both de-identification performance and 

intelligibility of the de-identified speech. For example, phonetic/speech recognition and synthesis 

approaches are characterized by good de-identification scores but lower intelligibility scores, 

whereas systems using voice conversion methods do not significantly degrade the quality of 

speeches but are not good at de-identifying the voice. Further improvements are necessary to 

develop new methods that successfully conceal the identity of speakers but also minimise the 

speech quality degradation. This is important for real-life speaker de-identification applications in 

which voice-driven devices are expected to recognise the speech content and human listeners are 

expecting to hear natural-sounding voices without information losses. 

3) The state-of-the-art schemes for speaker de-identification require system training and previous 

enrolment of speakers which brings limitations in real-world applications. In other words, by 

using the speaker de-identification system, users’ speech materials need to be provided and their 

voice features need to be identified in advance. In most cases, such voice conversion based 

solutions require parallel corpora of aligned sentences for system training, with the same text 

spoken by both the source and target speakers. This also brings limitations in practical 

applications, where the user is unwilling to be identified by the system, e.g. in anonymous police 

systems or helplines. In addition, with only a closed set of speakers to be de-identified, it would 

be also not practical in applications with large numbers of potential users, e.g. call centres 

providing services to the general public. Hence, it is very desirable to develop online acoustic de-

identification techniques that could be compatible with such applications, so that any unseen new 

users are able to use the speaker de-identification system, without providing speech samples for 

feature training in advance. Although few methods have been proposed recently to address the 

claimed issue [1], they have important disadvantages like the losses of speech content or their 

negative impacts on the de-identification scores. 

4) No existing scheme is capable of assuring both reversibility and non-reversibility of the de-

identified speech. In some practical applications such as telephone bank services, the de-identified 

speeches need to be re-identified by authorised listeners. In the meantime, these systems also need 

to assure that unauthorised listeners are not able to re-identify the speaker’s identity. It is evident 

that how to design a scheme to achieve both reversibility and non-reversibility speaker de-

identification is still quite challenging. For example, the voice conversion based approaches aim 

to learn a conversion function between source speaker and target speaker, which assures good 

reversibility of the de-identified speech. However, such methods also pose potential security 

issues if the conversion function is learnt by adversaries. Due to the independence between the 

recognition and the synthesis modules, the speech/diphone recognition and synthesis based 

solutions assure high level of non-reversibility of de-identification. Though, such systems are not 

applicable to the scenarios where the reverse process, to obtain the speaker’s real identity, is 

required. So it is very desirable to develop a de-identification solution which allows authorised 

user to transform the de-identified speech back to the original speech but to a certain extent, 

avoiding unauthorised user to re-identify the speaker. 

5) It is not possible to distinguish different speakers after de-identification at the present as all 

speeches are re-synthesised to the same target speaker. This brings limitations in which speaker 

individuality is required in some real-world applications, such as voice-driven smart assistants. In 

this case, it is desired if users can be individually recognised by voice-driven devices so that 

specific services can be provided for different users, e.g. personal recommendations. 

6) The schemes need to be evaluated further using larger speaker databases in order to verify the 

accuracy of evaluation experiments. From the literature review, all the reviewed speaker de-

identification systems were tested using speech corpus with a relatively limited number of 

speakers. For example, the voice conversion approaches in [7] was tested among the Wall Street 

Journal (WSJ0) corpus [23] which includes 24 male speakers. The speaker de-identification 

solution proposed in [11] is evaluated among a Croatian speech database of weather forecast [24], 
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which includes 10 male speakers. Hence, it is desirable that the de-identification solutions are 

evaluated using large speaker databases. 

According to the objectives of the report, solutions for the claimed problem 1 and problem 3 are 

proposed in the following Chapter 4. 

4. Initial works toward speaker de-identification 

During the first year, several algorithms have been implemented, developed and tested with the aim of 

achieving online high-quality speaker de-identification. This chapter gives a description of the initial 

research work and is structured as follows.  

❒ In Section 4.1, a state-of-the-art performance GMM-based speaker de-identification system is 

implemented as the baseline method for further experiment and comparison with the new 

method.  

❒ Section 4.2 introduces and discusses the evaluation of a novel speaker de-identification 

technique, which improves the de-identification performance without the previous enrolment 

of the target speakers that are to be de-identified.  

❒ Section 4.3 contains the objective speaker recognition experiment results and discussions on 

both the baseline system and the new method. 

4.1 Baseline systems based on GMM and WFW 

We use two different voice conversion techniques as the baseline systems: the standard Gaussian 

Mixture Model (GMM) based voice conversion system [25] and the Weighted Frequency Warping 

(WFW) based voice conversion system [26].  

According to the bibliographic analysis carried out in Chapter 3, GMM based statistical conversion 

method [25] is the most reasonable choice as it is the only scheme applied for speaker de-

identification approaches within the voice conversion domain. GMM based voice conversion 

generates converted speech with good similarity to target speech. Hence, we use the GMM based 

system as one baseline system for the purpose of de-identification performance comparison. However, 

GMM-based method does not perform desired voice quality due to the speech degradation in the 

output speech. Given that the WFW based voice conversion maintains good quality of converted 

speech, we also use the WFW based method as another baseline system. 

Although the techniques implemented in this section do not contain relevant novelties with respect to 

the state of the art, the implementation of the GMM based and the WFW based voice conversion 

systems are needed as the baseline systems for further comparison with the newly proposed de-

identification method in section 4.2. In the next sub-sections, the implementation details of the 

baseline systems are described according to the structure of a generic voice conversion system, shown 

in Figure 3.1. 

4.1.1 Speech analysis and frame alignment 

The first step before creating a voice conversion system consists of choosing a suitable speech model 

with certain properties. In this baseline systems, the Harmonic plus stochastic model (HSM) [27] is 

used to represent the speech signal frames. The HSM model assures flexible and high-quality 

modification among the prosodic features and spectral characteristics from the speech signals [28]. In 

this work, the HSM parameters include the fundamental frequency, the harmonic components and the 

stochastic components. During the speech signal analysis phase, the mean and variance statistics of 

pitch information is to be converted. Additionally, the amplitude and phase of the harmonic 

components below 5 kHz are translated to an all-pole filter. This filter is then converted in to its 

associated line spectral frequencies (LSFs). Finally, the stochastic components are represented by the 

LPC coefficients. 

Additionally, the non-parallel alignment method [29] is employed in this baseline systems for the 

purpose of frame alignment. By non-parallel, we mean that different set of utterances from different 

speakers are used for the voice conversion training. 
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4.1.2 Pitch conversion 

The fundamental frequency 𝑓0  or pitch is one of the most important excitation features when 

considering the identity of one speaker. A logarithmic Gaussian normalized transformation is used for 

pitch level conversion [14].  

𝑙𝑜𝑔𝑓0
′ =  𝜇𝑙𝑜𝑔𝑓0

𝑦
+

𝜎𝑙𝑜𝑔𝑓0

𝑦

𝜎𝑙𝑜𝑔𝑓0

𝑥 (𝑙𝑜𝑔𝑓0 − 𝜇𝑙𝑜𝑔𝑓0

𝑥 ) (4.1) 

where 𝜇𝑙𝑜𝑔𝑓0

𝑥  and 𝜎𝑙𝑜𝑔𝑓0

𝑥  are the mean and variance of 𝑓0 in the log domain for the source speaker, 

𝜇𝑙𝑜𝑔𝑓0

𝑦
 and 𝜎𝑙𝑜𝑔𝑓0

𝑦
 are the mean and variance of 𝑓0 in the log domain for the target speaker. 

4.1.3 Spectral mapping using GMM 

After non-parallel frame alignment, the spectral mapping between source speaker and the target 

speaker is characterised by {𝑥𝑡, 𝑦𝑡}, where the 𝑥𝑡 denotes the source feature vectors and the 𝑦𝑡 denotes 

the target feature vectors at frame 𝑡 respectively. The spectral mapping method by using GMM has 

been described extensively in Section 3.1, so no more details are given here. 

4.1.4 Spectral mapping using WFW 

Weighted frequency warping (WFW) is the combination of GMM-based and dynamic frequency-

warping (DFW) based voice conversion methods [26]. During the training phase, the linear frequency 

warping function 𝑊𝑛(𝑓) of GMM component 𝑛 is determined by the position of the formants. During 

the testing phase, the warping function 𝑊𝑛(𝑓)  of GMM component 𝑛  is determined as a linear 

combination of the 𝑁 warping functions. It can be expressed as: 

𝑊(𝑡)(𝑓) = ∑ 𝑝𝑛(𝑥𝑡)

𝑁

𝑛=1

𝑊𝑛(𝑓) (4.2) 

where 𝑝𝑛(𝑥𝑡) denotes the posterior probability for GMM component 𝑛, given by Equation (4.6).  

On the one hand, the input frame envelope 𝑆(𝑡)(𝑓) is warped in frequency domain as follows: 

𝑆𝑑𝑓𝑤
(𝑡)

(𝑓) =  𝑆(𝑡)[𝑊(𝑡)(𝑓)]
−1

  (4.3) 

On the other hand, a converted spectrum 𝑆𝑔𝑚𝑚
(𝑡)

(𝑓) is produced by means of the GMM. The GMM 

transformed envelope captures overall trends in spectral power, while the DFW transformed envelope 

maintains spectral details. Hence, these two separate converted envelopes are then weighted in order 

to smoothen the spectral details of the frequency warped envelope. 

Finally, an energy correction filter is applied that is a smoothed convolution of the ratio of GMM-

transformed envelope and DFW-transformed envelope with a triangular in frequency window. 

Therefore, the final converted spectrum is provided here below:  

𝑆𝑤𝑓𝑤
(𝑡) (𝑓) = |

𝑆𝑔𝑚𝑚
(𝑡)

(𝑓)

𝑆𝑤𝑓𝑤
(𝑡) (𝑓)

| ∗ 𝐵(𝑓) 𝑆𝑑𝑓𝑤
(𝑡)

(𝑓) (4.4) 

Where * denotes the convolution operation and 𝐵(𝑓)  is the triangular smoothing-in-frequency 

function of the energy correction filter. Moreover, the same prediction function given in Equation (3.6) 

is used to obtain the stochastic part of the converted envelope.  
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4.2 A new speaker de-identification method based on LPC 

According to the objectives defined at the beginning of this report, this section presents a new 

acoustic de-identification method whose goals are i) to enhance the efficiency of the speaker de-

identification performance; and ii) to allow unseen speakers to be de-identified without the previous 

enrolment of their speech samples. 

As it was mentioned in Chapter 3, so far the efforts of researchers have been focused mainly on de-

identifying spectral acoustic features of speech. However, prosodic characteristics of voice also 

contain important information about the speaker individuality. In this work, a new acoustic de-

identification method based on spectral envelope de-identification combined with prosodic 

modification is proposed. Theoretically, this combination brings together the advantages of both 

approaches, so that a better de-identification performance could be expected. 

4.2.1 Fundamentals of source-filter speech model 

The human speaking process can be described by the so called source-filter model, where the source 

signal represents the airflow coming from the glottis, and the physical vocal tract is represented by a 

filter that modifies the frequency-shape of the source signal [14]. In this work, the source-filter speech 

model is selected to create the new speaker de-identification method. The reason is that theoretically, 

parameterising both the glottal source and the vocal tract allows the highest level of capturing the 

identifiable features from the speech.  

From a signal processing point of view, in implementation of the source-filter model of speech 

production, the sound source or excitation signal 𝑥(𝑡) is often modelled as a periodic impulse train for 

voiced speech, or white noise for unvoiced speech. The vocal tract filter is approximated by an all-

pole filter in the simplest case with impulse response ℎ(𝑡), where the coefficients are obtained by 

performing linear prediction to minimize the mean-squared error in the speech signal to be reproduced. 

Convolution of the excitation signal 𝑥(𝑡) with the filter’s impulse response ℎ(𝑡) then produces the 

synthesised speech 𝑦(𝑡). The signal processing representation of the source-filter model is illustrated 

in figure 4.1.  

 

Figure 4.1 Signal processing representation of the source-filter model 

Therefore, in the spectral domain, a speech signal 𝑌 of 𝑛 frames {𝑦1, … , 𝑦𝑛} can be represented as 

𝑌(𝜔) = 𝐻(𝜔) ∙ 𝑋(𝜔), where 𝐻(𝜔) represents the vocal tract transfer function of signal 𝑌(𝜔), and 

𝑋(𝜔) denotes the Fourier transform of the glottal source excitation signal [30]. Hence, a de-identified 

speech signal 𝑌′(𝜔) can be obtained by replacing a de-identified transfer function 𝐻′(𝜔) and a de-

identified source excitation signal 𝑋′(𝜔), as 𝑌′(𝜔) = 𝐻′(𝜔) ∙ 𝑋′(𝜔). Particularly, it is worth noting 

that the transfer function is usually referred to as spectral characteristics, and the glottal source 

excitation signal is usually referred to as prosodic characteristics. A detailed explanation of both the 

prosodic de-identification and spectral de-identification is presented in the following subsections. 

4.2.2 Pre-processing of speech signals 

Pre-emphasis 

The first stage in the signal re-processing is to boost the amount of energy in the high frequencies 

before the linear-prediction analysis, which is referred as pre-emphasis. During the reconstruction of 

the signal, a de-emphases process is applied to reverse the effects of pre-emphasis. It turns out that in 

the spectrum for voiced segments like vowels, there is more energy at the lower frequencies, which is 

called spectral tilt, is caused by the nature of the glottal pulse [31]. Therefore, boosting the high 

frequency energy makes information from these higher formants more available to the acoustic model 

and improves phone detection accuracy. Without pre-emphasis, the linear prediction would 

incorrectly focus on the lower-frequency components of speech, losing important information about 
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certain speech segments. The pre-emphasis phase is performed by a first-order high-pass filter. In the 

time domain, with input 𝑥(𝑛) and 0.9≤≤1.0, the filter equation is 𝑦[𝑛] = 𝑥[𝑛] − 𝑥[𝑛 − 1]. Since 

the spectrum of a vowel spoken by an average human being falls off with approximately 6 dB per 

octave, a pre-emphasis frequency of 50 Hz is applied in this work. 

Deconvolution based on linear predictive analysis 

Given a convolved signal 𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡), deconvolution is applied to isolate the components 𝑥(𝑡) 

and ℎ(𝑡). Several deconvolution methods have been proposed for speech analysis, such as cepstral 

analysis and linear predictive coding [32]. The main disadvantage of cepstral analysis is that the 

speech deconvolution is performed in the frequency domain, which leads to a certain amount of 

computational complexity. Therefore, the linear prediction analysis is applied in this work as it can be 

performed in the time domain. According to linear predictive coding, the nth sample in a set of speech 

samples can be predicted by the weighted amount of the p previous samples illustrated as: 

�̂�(𝑛) = ∑ 𝑎𝑘𝑠(𝑛 − 𝑘)

𝑝

𝑘=1

 (4.5) 

where 𝑎𝑘 denotes the weights on the previous samples, and the number of samples p denotes the order 

of the LPC during the speech analysis phase. The optimal values of weights 𝑎𝑘  are selected to 

minimise the mean error 𝑒(𝑛) between the genuine speech samples and its predicted value. 

𝑒(𝑛) = 𝑠(𝑛) − ∑ 𝑎𝑘𝑠(𝑛 − 𝑘)

𝑝

𝑘=1

 (4.6) 

After applying the z-transform, the error signal 𝐸(𝑧) can be represented as the multiplication of the 

speech signal 𝑆(𝑧) and the transfer function 𝐴(𝑧). 

𝐸(𝑧) = 𝑆(𝑧) [1 − ∑ 𝑎𝑘

𝑝

𝑘=1

𝑧−𝑘] = 𝑆(𝑧)𝐴(𝑧) (4.7) 

Therefore, the speech signal 𝑆(𝑧) can be represented as: 

𝑆(𝑧) =
𝐸(𝑧)

𝐴(𝑧)
 (4.8) 

where the transfer function 1/𝐴(𝑧)  represents an all-pole digital filter, and the coefficients 𝑎𝑘 

correspond to the poles in the filter’s z-plane. 

4.2.3 Filter/Spectral de-identification 

By filter de-identification, we mean the modification of the magnitude spectrum of the frequency 

response of the vocal tract system (Stylianou 2009). After the determination of LPC coefficients 𝑎𝑘, 

the filter 𝐴(𝑧) can be obtained following the Equation 4.15. The excitation component 𝑒(𝑛) can be 

obtained by filtering the original signal 𝑠(𝑛) with the inversed filter 1/𝐴(𝑧). Finally, the filter 𝐴(𝑧) is 

replaced by a new filter extracted from a different speaker, while the excitation component remains 

the one from the source speaker. The procedure of filter de-identification is illustrated in Figure 4.2. 
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Figure 4.2 Procedure of the filter de-identification 

4.2.4 Source/Prosodic de-identification 

Apart from the filter de-identification, the source de-identification phase mainly includes three types 

of modification: pitch modification, time-scale modification, and energy modification [33]. 

Pitch modification 

The goal of pitch modification is to alter the fundamental frequency in order to compress or to expand 

the spacing between the harmonic components in the spectrum while preserving the short-time 

spectral envelope as well as the time evolution. It has to be clarified that the pitch and fundamental 

frequency are used interchangeably in this context though they differ in their definitions. However, 

pitch is in fact the perceived fundamental frequency. Pitch-Synchronous Overlap and Add (PSOLA) 

is a method used to manipulate the pitch of a speech signal to match it to that of the target speaker 

[34]. The basic algorithm for the PSOLA technique consists of three steps: 

❒ Firstly, the speech signal is divided into separate but overlapping signal segments. This is 

accomplished by windowing segments around each pitch mark or peak amplitude in the 

original signal. 

❒ Secondly, the separated signals are modified by either repeating or leaving out speech 

segments, depending on whether the pitch of the target speaker is higher or lower than the 

pitch of the source speaker. 

❒ Finally, the remaining signal segments are recombined via the method of overlapping and 

adding. The re-synthesised signal contains different fundamental frequency compared to the 

source speaker, while remains the same spectrum characteristics. 

Duration modification 

The duration-scale de-identification aims to change the speaker duration characteristics through 

modifying the speaking rate of articulation. This means that the formant structure of the input speech 

is changed at a slower or faster rate than the rate of the input speech, otherwise the structure is not de-

identified [33]. The appropriate time-scale de-identification factor 𝛽(𝑡) can be estimated as: 

𝛽(𝑡) = ∑ 𝑣𝑖

𝑑𝑖
𝑡

𝑑𝑖
𝑠

𝐿

𝑖=1

 (4.9) 

where 𝑖 denotes index of signal frame, 𝐿 denotes the total number of signal frames, 𝑣𝑖 represents the 

value of weights, and 𝑑𝑖
𝑠  and 𝑑𝑖

𝑡  represent average duration statistics of source speaker and de-

identified speaker respectively. 

Energy modification 

In addition to pitch and duration, energy is another important component which characterises the 

prosody of a speaker. The goal of energy de-identification is to modify the perceived loudness of the 

input speech [33]. It is considered to be the simplest de-identification among the prosodic de-

identification since the signal is just multiplied by a scale factor which corresponds in amplifying or 
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attenuating all the frequencies by the same factor. The signal energy is scaled with a variable 𝛾 at each 

frame. The scaling factor can be expressed as follows: 

𝛾(𝑡) = ∑ 𝑤𝑖

𝑒𝑖
𝑡

𝑒𝑖
𝑠

𝐿

𝑖=1

 (4.10) 

where 𝑖 denotes index of signal frame, 𝐿 denotes the total number of signal frames, 𝑤𝑖 represents the 

value of weights, and 𝑒𝑖
𝑠  and 𝑒𝑖

𝑡  denote average energy characteristics of source speaker and de-

identified speaker, respectively.  

4.3 Speaker verification experiments 

According to the evaluation criteria defined in Chapter 2, the de-identification performance of the 

described speaker de-identification systems can be rated by the state-of-the-art speaker recognition 

system.  

4.3.1 Speaker verification system 

In this work, the conventional GMM-UBM speaker recognition techniques is applied [35]. The de-

identification performance against speaker identification systems is evaluated by calculating de-

identification score DIR for all experiments as defined in Chapter 2. 

In the conventional GMM-UBM framework, the universal background model (UBM) is a Gaussian 

mixture model (GMM) that is trained on a pool of background data from a large number of speakers 

[36]. The speaker models are then adapted from the UBM using the maximum a posteriori (MAP) 

estimation. During the evaluation phase, each test utterance is scored against the background model 

and the given speaker model to accept or reject an identity claim. Here, the number of Gaussian 

mixture component used is 64 and the GMMs for each speaker in the database are trained using 10 

iterations of EM algorithm. 

4.3.2 Speaker de-identification systems 

For baseline systems using GMM and WFW, the analysis rate of speech files is 128 samples per 

frame and the Hamming window is used for windowing. We set the pitch range from 60 to 500 Hz 

and maximum voiced frequency considered is 5500 Hz. In voice conversion, spectral 

parameterizations using line spectral frequencies (LSFs) with 14th order LPC filter is considered due 

to its good interpolation properties. On the other hand, as MFCC has been used extensively for 

speaker recognition research, we use MFCC as the feature for all speaker recognition experiments. 

Here, 39 dimensional MFCCs including delta and delta–delta coefficients are extracted using linearly 

spaced filters in Mel scale [37]. Here, features are not further processed for RASTA filtering, voice 

activity detection (VAD), utterance level cepstral mean and variance normalization (CMVN), because 

it will not affect our final aim i.e. to compare the de-identification performance of different speaker 

de-identification systems against the speaker recognition systems. For both the GMM and WFW 

based approaches, we set the order of GMM models as 8 for the voice conversion experiments. 

For the new speaker de-identification solution based on LPC, the pre-emphasis frequency of 50 Hz is 

applied to all the speech signals in the database. Then due to the 5500-Hz band-limiting 

implementation, we resample all the segments to 11 kHz. For the linear-prediction analysis on the 

resampled frames, the LPC filter of 28th order is applied in this work. During the pitch analysis phase, 

the scope of pitch analysis is between 75 hertz and 600 hertz. 

4.3.3 Database design 

CMU ARCTIC [38] is a parallel database provided by the Carnegie Mellon University, which 

contains 7 different speakers with 540 parallel utterances from each of them [38]. The seven speakers 

in the database are coded as: BDL (US English, US male), SLT (US English, US female), CLB (US 

English, US female), RMS (US English, US male), JMK (US English, Canadian male), AWB (US 

English, Scottish male) and KSP (US English, Indian male). It provides 16-bit, 16 kHz sampled 
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speech waveform file for each utterance and most of the recorded sentences are between 1 and 4 s 

duration.  

Due to the fact that a large number of utterances are included in the CMU ARCTIC database, we use 

this corpus for target speaker model training and testing in the speaker verification experiments. To 

perform this task, 3 male (BDL, RMS, KSP) and 2 female (CLB, SLT) speakers are taken from the 

corpus. It is worth noting that we have not used parallel sentences of each speaker in the experiments 

because they may introduce an unfair bias for certain phonemes in the speaker recognition procedure. 

This is why we use 30 utterances of each speaker for target speaker model training and another 30 

utterances for testing. This forms baseline corpus in these speaker verification experiments.  

Additionally, 100 utterances of each 5 speakers is utilised to conduct genuine experiments to set the 

decision threshold of the speaker verification system. By genuine experiment, we mean no de-

identification is applied here. In particular, the fixed decision threshold will be applied for the speaker 

verification system to decide whether the de-identified data are to be accepted or rejected for a fixed 

target speaker. Thus, the number of genuine target trials will be 500 (5×100) and the number of 

genuine imposter trials will be 2000 (5×100×4). 

We then design the testing corpus for the three described speaker de-identification systems (GMM, 

WFW, LPC) described in Section 4.1 and 4.2. Here, speaker models are the same as the baseline 

corpus, but the test utterances of each speaker are de-identified through three speaker de-identification 

techniques. Speaker de-identification is carried out through all possible transformation directions, 

including M→M, M→F, F→F, and F→M, where M and F denote male and female respectively. 

Therefore, the number of genuine trials will be 150 (30 test sentences for each 5 speakers). The 30 test 

utterances of each 5 speakers undergo speaker de-identification to develop the testing corpus. As a 

result, the number of de-identified testing utterances will be 600 (5×30×4).  

TIMIT [39] is an acoustic/phonetic continuous read speech database, which contains broadband 

recordings of 630 speakers of eight major dialects of American English, each speaker reading ten 

sentences. The database includes time-aligned orthographic, phonetic and word transcriptions. Due to 

the large number of speakers, the TIMIT corpus is used for Universal Background Model (UBM) 

training in the speaker verification experiments. For designing the UBM corpus, all 10 utterances of 

each 462 speakers from the training section of the database are used. The detailed database design and 

several statistics regarding all the related experiments are illustrated in Table 4.1. 

Table 4.1 Statistics regarding speaker verification experiments 

 Male Female Total 

Target speakers 3 2 5 

No of speakers in UBM 326 136 462 

Genuine target trials 300 200 500 

Genuine imposter trials 1200 800 2000 

Converted test trials 360 240 600 

4.3.4 Experiment results and discussion 

As described in Section 4.3.3, genuine experiments are conducted to set the decision threshold of the 

speaker verification system to decide whether the claim is to be accepted or rejected for a fixed target 

speaker. The total number of test utterances here is 500, and the genuine test results are shown in 

Table 4.2. The decision threshold is determined when the FAR is 0% for 500 target trials and the FRR 

is 0% for 2000 imposter trials. This indicates an excellent recognition performance of 100% against 

the fixed threshold. 

The experiment results using the GMM-UBM speaker verification system are given in Table 4.3. 

Here, we report de-identification rate (DIR) values using all three speaker de-identification techniques 

for all possible conversion directions. The larger the DIR, the better de-identification performance of 

the speaker de-identification system. From Tables 4.3, we can see that for three speaker de-

identification techniques (GMM, WFW and LPC), the DIR score of the LPC based system is much 

higher than the GMM based and WFW based systems. Thus, it can be said that the LPC based speaker 
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de-identification method produces more desired performance on speaker de-identification than GMM 

based and WFW based approaches. The main reason for the higher de-identification score of LPC 

based method is that it captures overall features in both spectral and prosodic domains. Whereas, the 

GMM de-identifies only trends in spectral power and WFW is basically a hybrid approach between 

GMM and DFW techniques that tries to do a compromise between capturing overall trends in spectral 

power and maintaining spectral details by using an energy correction filter. Here, during frequency 

warping phase, a certain amount of spectral contents remains intact as the source speaker, which 

degrades the de-identification performance of the transformed speech in WFW based method. 

Although a ‘perfect’ de-identification performance can be seen using the LPC-based new strategy 

from Table 4.2, it can be also caused by the speech quality degradation in the de-identified speech. In 

order to prove the intelligibility of the de-identified speech, the speech recognition experiments will 

be conducted as the next step. 

Table 4.2 Speaker verification results using genuine utterances 

SV system used  Test utterances Target trials Imposter trials FAR (%) FRR (%) 

GMM-UBM 500 500 2000 0 0 

Table 4.3 Speaker verification results using three speaker de-identification systems 

SDI technique used  Test utterances Accepted Rejected DIR (%) 

GMM 600 84 516 86.0000 

WFW 600 157 443 73.8333 

LPC 600 0 600 100 

5. Future work plan 

According to the scope of work described in Section 1.3, the research project can be divided into 5 

work packages as: 

❒ Work 1: Risk assessment against speaker identification 

❒ Work 2: Literature review for speaker de-identification solutions 

❒ Work 3: Development of high-quality speaker de-identification strategy 

❒ Work 4: Evaluation for speaker de-identification methodologies 

❒ Work 5: Integration of speaker de-identification system into voice user interface 

During the last one year, initial efforts have been made to complete the Work 1 and Work 2 packages, 

including the risk assessment and the literature review. Additionally, Work 3 package has been 

partially completed, including the implementation of the state-of-the-art baseline speaker de-

identification systems and the development of one novel speaker de-identification strategy as 

described in Chapter 4. 

Thus, the future works will continue to focus on Work 3 to Work 5 packages during the next period of 

24 months. The thesis is to be completed during the last six months till September in 2018. The work 

packages, individual tasks, deliverables and milestones are shown in the following Gantt Chart Table 

5.1. Detailed tasks within each work package are described as follows: 

Work 3: Development of high-quality speaker de-identification strategy 

❒ Task 3.1: Efficiency-enhanced speaker de-identification strategy. The objective of this task is 

to enhance the efficiency of the speaker de-identification performance. One of the solutions is 

to combine both the prosodic de-identification and spectrum de-identification, which 

theoretically preserves better de-identification performance. 

❒ Task 3.2: Intelligibility-preserved speaker de-identification strategy. The goal in this task is to 

preserve the intelligibility of the de-identified speech signals. One of the possible steps to 

achieve better intelligent speech is to use a promising approach of speech synthesis, which is 

based on the deep-belief networks. Moreover, it is worth exploring new target speaker 

selection methods to reconstruct more intelligent sounding speech. 
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❒ Task 3.3: Non-Limitation on target speakers to be de-identified. The aim here is to allow any 

unseen new users can use the speaker de-identification system for speaker de-identification, 

without providing speech samples for feature training and enrolling at the system in advance. 

This aim can be accomplished by developing an online speaker modification system. 

❒ Task 3.4: Reversibility- and non-reversibility-assured speaker de-identification strategy. This 

task aims to allow authorised listeners to retrieve the original identity of the source speaker 

but to avoid un-authorised listeners re-identifying the source speaker. One of the solutions is 

to transform a speaker key that would allow authorised user to transform the de-identified 

speech back to the original speech but to a certain extent, avoiding unauthorised user to re-

identify the speech. 

❒ Task 3.5: Individuality-guaranteed speaker de-identification strategy. The objective of this 

task is to guarantee individuality between different speakers. One of the possibilities to 

achieve this goal is to apply different acoustic transformation methods to the speech provided 

by different speakers. 

Work 4: Evaluation for speaker de-identification methodologies 

❒ Task 4.1: Efficiency evaluation for speaker de-identification approaches. This objective 

evaluation experiment will be performed by the state-of-the-art speaker identification systems 

and speaker verification systems. 

❒ Task 4.2: Intelligibility evaluation for speaker de-identification approaches. The intelligibility 

of de-identified speech will be evaluated by means of the state-of-the-art speech recognition 

systems. 

❒ Task 4.3: Subjective evaluation for speaker de-identification approaches. The efficiency of 

speaker de-identification and the intelligibility of the de-identified speech will be also rated 

by real human listeners, so that the final performance scores are reliable and give an idea of 

the impact that the resulting system can have in real world. 

Work 5: Integration of speaker de-identification system into the voice user interface 

❒ Task 5.1: Implementation of the voice-driven user interface system. 

❒ Task 5.2: Integration of the resulting speaker de-identification system into a voice UI system. 

 

Figure 5.1 Framework of future work plans

W3: Development of high-quality speaker de-identification strategy 

T3.1 Efficacy-enhanced strategy T3.2 Intelligibility-preserved strategy 

W4: Evaluation for speaker de-identification methodologies 

T4.1 Efficacy evaluation using speaker 
recognition system 

T4.2 Intelligibility evaluation using 
speech recognition system 

W5: Implementation of speaker de-identification system with voice UI 

T5.1 Implementation of the voice-
driven user interface system 

T5.2 Integration of speaker de-
identification system into voice UI 

T3.3 Non-Limitation on target 
speakers to be de-identified 

T3.4 Reversibility- and non-
reversibility-assured strategy 

T3.5 Individuality-guaranteed strategy 

T4.3 Subjective evaluation using 
human listeners 
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Table 5.1. Gantt chart 
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W1: Risk assessment against SDI                                                                         

W2: Literature review for SDI strategies                                                                         

D1: Literature survey           1                                                             

W3: High-quality SDI solution                                                                         

       T3.1 Efficacy-enhanced strategy                                                                         

       T3.2 Intelligibility-preserved strategy                                                                         

       T3.3 Non-Limitation on speakers                                                                         

       T3.4 (Non-)Reversibility-assured strategy                                                                         

       T3.5 Individuality-guaranteed strategy                                                                         

D2: Year 1 report                       2                                                 

W4: Evaluation for SDI methods                                                                         

       T4.1 Efficacy evaluation                                                                         

       T4.2 Intelligibility evaluation                                                                         

       T4.3 Subjective evaluation                                                                         

D3: Year 2 report                                               3                         

W5: Integration of SDI system into voice UI                                                                         

       T5.1 Implementation of voice UI                                                                         

       T5.2 Integration of SDI into voice UI                                                                         

PhD thesis writing                                                                         

D4: PhD thesis                                                                       4 
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6. Conclusions 

In this report we systematically review speaker de-identification solutions that have been proposed in 

the literature. We notice that most schemes are based on voice conversion techniques, modifying the 

voice produced by a specific speaker, for it to be perceived by listeners as if it had been uttered by a 

different speaker. In the following text we discuss our main findings. First, the efforts of researchers 

have been focused mainly on de-identifying acoustic spectral features of speech; however, de-

identifying prosodic characteristics of voice is still an important challenge. Second, currently no 

scheme exists that achieves good scores on both de-identification and intelligibility. Third, state-of-

the-art schemes for speaker de-identification require system training and previous enrolment of 

speakers which brings limitations in real-world applications. Fourth, no existing scheme is capable of 

assuring both reversibility and non-reversibility of the de-identified speech. Fifth, it is not possible to 

distinguish different speakers after de-identification at the present. Sixth, the schemes need to be 

evaluated further using larger speaker databases in order to verify the accuracy of evaluation 

experiments. 

Furthermore, in this report we proposed a novel solution to speaker de-identification, which relies on 

the combination of spectral de-identification and prosodic de-identification techniques. This new 

strategy addresses the first and third problems as described in the former paragraph. In particular, this 

method does not require system training or previous enrolment of speakers for de-identification, thus 

significantly extending possible applications in real-world scenarios. We evaluated the proposed 

method through objective speaker verification experiments to assess the de-identification performance. 

In order to prove the validity of the new method, it is compared to the state-of-the-art systems based 

on statistical Gaussian mixture model. The experimental results indicate that the proposed method 

produces more desired performance on speaker de-identification than the state-of-the-art baseline 

systems. The main reason for the higher de-identification score of the new method is that it captures 

overall identifiable voice features in both spectral and prosodic domains. 

Research for the next two years will continue to focus on high-quality speaker de-identification 

strategy. This high-quality method aims to address the rest of the problems described in the first 

paragraph (e.g. second, fourth, fifth and sixth problems). In addition, speech recognition experiments 

will be conducted to examine the speech intelligibility performance. The resulting speaker de-

identification system will be integrated into a real-life voice-driven application. 
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